Skip to contents

During a nested sampling run, you may wish to update the internal parameters of the LRPS based on sampler performance or other criterion. The frequency of these updates is set by the first_update and update_interval arguments of ernest_sampler().

If you are creating your own ernest_lrps subclass, implement this method to specify any special update behaviour. The default method reconstructs the LRPS with current parameters and resets the likelihood call counter in the cache.

Usage

update_lrps(x, ...)

# S3 method for class 'mini_balls'
update_lrps(x, unit = NULL, ...)

# S3 method for class 'multi_ellipsoid'
update_lrps(x, unit = NULL, log_volume = NULL, ...)

# S3 method for class 'no_underrun'
update_lrps(x, unit = NULL, ...)

# S3 method for class 'rwmh_cube'
update_lrps(x, unit = NULL, ...)

# S3 method for class 'slice_rectangle'
update_lrps(x, unit = NULL, ...)

# S3 method for class 'unif_ellipsoid'
update_lrps(x, unit = NULL, ...)

Arguments

x

An ernest_lrps object.

unit

A matrix of live points within the sampler. If NULL, no LRPS updates based on the state of the live points will be made.

log_volume

The current log-volume of the nested sampling run.

Value

An updated ernest_lrps object with the same class as x, possibly with updated parameters.