Generate new live points by performing rejection sampling across the entire prior distribution. This is highly inefficient as an LRPS, but may be useful for testing the behaviour of a nested sampling specification.
Value
A list with class c("unif_cube", "ernest_lrps")
. Can be used with
ernest_sampler()
to specify the sampling behaviour of a nested sampling
run.
References
Speagle, J. S. (2020). Dynesty: A Dynamic Nested Sampling Package for Estimating Bayesian Posteriors and Evidences. Monthly Notices of the Royal Astronomical Society, 493, 3132–3158. https://doi.org/10.1093/mnras/staa278
Examples
data(example_run)
lrps <- unif_cube()
ernest_sampler(example_run$log_lik_fn, example_run$prior, sampler = lrps)
#> Nested sampling specification <ernest_sampler>
#> No. Points: 500
#>
#> ── Sampling Method
#> • ! An abstract LRPS sampler <ernest_lrps>